Admission Control Policies for WCDMA Satellite Return Link in an Avionic Environment

Paolo Dini, Marco Massaroni

6th European Workshop on Mobile/Personal SatComs EMPS 2004
2nd Advanced Satellite Mobile Systems Conference ASMS 2004

ESA-ESTEC Noordwijk – The Netherlands
Outline

- Introduction
- System Architecture
- Service Provision
- Admission Control Policies
 - Fixed Threshold admission control
 - Effective Bandwidth admission control
- Result analysis
Introduction

- **In-Flight Entertainment**
 - Goal: supply passengers with multimedia services
 (broadband Internet access, real-time communications,…)

- **Broadband Communication**
 - bi-directional high bandwidth satellites working in *Ku band*

EU NATACHA project
System Architecture

APC, Pax. Data Services
Cabin Crew Data Service
On board Router
Airborne System
Cockpit Data Service
Broadband Communication Equipment

Shared Communication Resource

Ground Station
Satellite Data Link

- Constellation of geostationary satellite working in Ku band

- **Return link** based on **Code Division Multiple Access**
 - Flexibility for an high mobility environment

- Radio Resource Management issues:
 - Power control
 - Admission control
 - Congestion control (data scheduler)
 - Bandwidth allocation
Service Provision

- **IP** based services:
 - Voice over IP
 - Video-conferencing
 - Web browsing
 - File transfer

- Introduction of **Classes of Service** for QoS guarantees

<table>
<thead>
<tr>
<th>Class of Service</th>
<th>Conversational Class</th>
<th>Interactive Class</th>
<th>Background Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td>Real Time</td>
<td>Time elastic</td>
<td>Best Effort</td>
</tr>
<tr>
<td></td>
<td>Conversational model</td>
<td>Request/response model</td>
<td>No requirement on delay</td>
</tr>
<tr>
<td></td>
<td>Strict delay and jitter requirements</td>
<td>Delay requirements</td>
<td>Payload integrity</td>
</tr>
<tr>
<td>Example</td>
<td>VOICE</td>
<td>Web browsing</td>
<td>E-MAIL</td>
</tr>
<tr>
<td>Kind of traffic</td>
<td>VBR on-off</td>
<td>VBR bursty</td>
<td>VBR bursty</td>
</tr>
</tbody>
</table>
Service Provision

- **Centralized architecture**
- **Ground Station** controls
 - connection access to the network
 - resource reservation
- **Connection set-up phase:**
 - each connection has to declare its *QoS profile*

<table>
<thead>
<tr>
<th>QoS Profile</th>
<th>Traffic class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum bit rate</td>
</tr>
<tr>
<td></td>
<td>Packet error rate</td>
</tr>
<tr>
<td></td>
<td>Residual bit error rate</td>
</tr>
<tr>
<td></td>
<td>Packet error ratio</td>
</tr>
<tr>
<td></td>
<td>Transfer delay</td>
</tr>
<tr>
<td></td>
<td>Guaranteed bit rate</td>
</tr>
</tbody>
</table>

Bit rate decreasing

OVSF code tree
(one per A/C)

Subtree (set of codes) assigned to a given connection.

One DCH assigned to each connection basing on the declared *QoS profile*
Admission Control Policies

- **Main problems:**
 - keep interference low enough to save QoS of already accepted connections
 - high system capacity
- **Two approaches** are introduced:
 - *Fixed threshold admission control*
 - *Effective bandwidth admission control*
- Admission control rules applied only to **guaranteed bit rate classes**
- A data **scheduler** based on *Earliest Deadline First* discipline is adopted for both the admission control approaches
Admission Control Policies

- **Fixed Threshold Admission Control**
 - Model based algorithm
 - Based on throughput admission control, typically adopted in a terrestrial environment

- **Effective Bandwidth Admission Control**
 - Based on:
 - Effective Bandwidth concept
 - Minimum Power Allocation Algorithm
 - Traffic sources:
 - Limit of Gaussian approximation
 - Solution for bursty sources
Fixed Threshold Admission Control

Not manageable load factor

\[\eta_{nm} = (1 + f) \sum_{j=1}^{N} \frac{1}{1 + \frac{\hat{E}_b}{I_0} \cdot AF_j} \]

\[f : \text{ inter-spot interference ratio} \]
\[SF_MAX : \text{max spreading factor} \]
\[AF : \text{Activity Factor} \]
\[\frac{\hat{E}_b}{I_0} : \text{Required SINR (QoS)} \]

EMPS/ASMS Conference 2004 – ESA-ESTEC, Noordwijk - September, 21st
Minimum Power Allocation Algorithm

Goal:
given a number of DCHs with heterogeneous BER requirements to find the minimum received power of each code channel such that QoS requirements are satisfied

\[
\frac{E_b}{I_0} \quad \text{SINR of user } i, \text{ level } \nu
\]

\[
\frac{\hat{E}_b}{I_0} \quad \text{Required SINR of user } i
\]

\[
N \quad \text{Number of user in a spot}
\]

\[
M \quad \text{code levels on OVSF tree}
\]

\[
G_\nu \quad \text{Spreading Factor at level } \nu = 512/2^{\nu-1}
\]

\[
N_0 \quad \text{Thermal noise}
\]

\[
r_\nu = W / G_\nu \quad \text{Bit rate at level } \nu
\]

\[
C^i = \left[C^i_1, \ldots, C^i_M \right] \quad \text{DCH associated to user } i
\]

\[
\Gamma_j = \sum_{l=1}^{M} \frac{C^j_l}{G_l}
\]

\[
A_i = \sum_{j \in AC_i} \left(\Gamma_j \cdot \frac{\hat{E}_b}{I_0} \right)
\]

\[
P^i_\nu \quad \text{Power rx of user } i \text{ at level } \nu
\]
Minimum Power Allocation Algorithm

\[I^i_{TOT} = (1 + f) \cdot \left(\sum_{h=1}^{N} \sum_{m=1}^{M} C^h_m \cdot P^h_m \right) - \sum_{j \in AC_i} \sum_{l=1}^{M} C^j_l \cdot P^j_l \]

- Total interference for user \(i \)

\[\frac{E^i_b}{I_0} = \left. \frac{P^i_v \cdot G_v}{I^i_{TOT} + N_0} \right| > \left. \frac{\hat{E}^i_b}{I_0} \right| \]

- Condition to evaluate the lower power needed to meet required SINR

\[P^i_v = \frac{N_0 \cdot \hat{E}^i_b}{I_0} \cdot \left[G_v \cdot [1 + A_i] \cdot \left[1 - (1 + f) \cdot \sum_{q=1}^{N_{AC}} \frac{A_q}{1 + A_q} \right] \right] \]

- Minimum Received Power for user \(i \) at level \(v \) to satisfy BER requirements
Minimum Power Allocation Algorithm

\[
\sum_{h=1}^{N} \left(\frac{\Gamma_h \cdot \hat{E}_b}{1 + A_h} \right) \leq \sum_{q=1}^{N_{AC}} \left(\frac{A_q}{1 + A_q} \right) \leq \frac{1 - \Delta}{1 + f}
\]

for every DCH of every user in the spot

\[
\Delta = \max_{v=1,...,M} \left[\frac{N_0 \cdot \hat{E}_b}{I_0} \right] = \max \left[\frac{N_0 \cdot \hat{E}_b}{I_0} \right] = \max \left[\frac{N_0 \cdot \hat{E}_b}{G_v \cdot P_{v,max} \cdot I_0} \right]
\]

It depends on the maximum power for a single DCH (load factor has not to exceed its maximum)

\[
C = \frac{1 - \Delta}{1 + f}
\]

Normalized System Capacity

\[
R_h = \frac{\Gamma_h \cdot \hat{E}_b}{1 + A_h}
\]

Normalized Transmission Rate of user \(h \)

EMPS/ASMS Conference 2004 – ESA-ESTEC, Noordwijk - September, 21st
Effective Bandwidth Admission Control

\[\sum_{h=1}^{N} R_h = \sum_{k=1}^{K} \sum_{n_k=1}^{N_k} R_{n_k} \leq \frac{1-\Delta}{1+f} - R_{be} \]

- \(N \): number of guaranteed bandwidth connections
- \(K \): number of guaranteed bandwidth classes
- \(R_{be} \): system capacity reserved to Best effort class

\[\Pr \left(\sum_{k=1}^{K} \sum_{n_k=1}^{N_k} R_{n_k} \leq \frac{1-\Delta}{1+f} - R_{be} \right) \geq \alpha \]

Gaussian approximation:
- connections are independent and identically distributed
- central limit theorem

\[\sum_{n_k=1}^{N_k} R_{n_k} \quad \text{Gaussian r.v. where } \mu_k, \sigma_k^2 \text{ are mean and variance of } R_h \]

\[G = \sum_{k=1}^{K} G_k \quad \text{Gaussian r.v. with } E[G] = \sum_{k=1}^{K} N_k \mu_k, \quad \text{Var}[G] = \sum_{k=1}^{K} N_k \sigma_k^2 \]

\(\alpha \): Satisfaction factor

Admission Region

EMPS/ASMS Conference 2004 – ESA-ESTEC, Noordwijk - September, 21st
Effective Bandwidth Admission Control

Admission Region becomes:

\[
\Pr \left(G \leq \frac{1 - \Delta}{1 + f} - R_{be} \right) \geq \alpha \quad \Rightarrow \quad \frac{1 - \Delta}{1 + f} - R_{be} - E[G] \geq \beta
\]

with \(\beta \) defined as

\[
\frac{1}{\sqrt{2\pi}} \int_{\beta}^{\infty} e^{-t^2/2} dt = \frac{1}{2} \text{erfc} \left(\frac{\beta}{\sqrt{2}} \right) = 1 - \alpha
\]

\[
\sum_{k=1}^{K} N_k \mu_k + \beta \sqrt{\sum_{k=1}^{K} N_k \sigma_k^2} \leq \frac{1 - \Delta}{1 + f} - R_{be}
\]

Admission Region
Remarks on the Algorithm

Probability Density Function

![Probability Density Functions](image)

Web traffic (aggregated)

Voice traffic (aggregated)

Bit rates of Interactive sources are not independent

EMPS/ASMS Conference 2004 – ESA-ESTEC, Noordwijk - September, 21st
Solution for Bursty Sources

Admission Region

\[
\left(N_1 \mu_1 + \beta \sqrt{N_1 \sigma_1^2} \right) + \left(R_{WEB} \right) \leq \frac{1 - \Delta}{1 + f} - R_{be}
\]

Moving average window

\[
R_{WEB} = \sum_{h=1}^{N_2} \bar{R}_h = \sum_{h=1}^{N_2} \left(\frac{\Gamma_h \cdot \hat{E}_b}{I_0} \cdot \frac{1}{1 + A} \cdot AF_{WEB} \right)_{SF_MAX}
\]

EMPS/ASMS Conference 2004 – ESA-ESTEC, Noordwijk - September, 21st
Simulation Results

Scenario 1:

- **VOICE**: (70-120) Request/min
- **WEB**: 90 Request/min
- **EMAIL**: 80 Request/min

Blocking probability

![VOICE Blocking Probability Graph]

![WEB Blocking Probability Graph]
Simulation Results

End-To-End Delay

Average ETE delay (VOICE)

Average ETE delay (WEB)

Average ETE delay (EMAIL)

Throughput

Average Througput (VOICE)

Average Througput (WEB)

Average Througput (EMAIL)
Simulation Results

Scenario 2:
- VOCE: 90 requests/min
- WEB: (80-130) requests/min
- EMAIL: 80 requests/min

Blocking probability

- AUDIO Blocking Probability
- WEB Blocking Probability

EMPS/ASMS Conference 2004 – ESA-ESTEC, Noordwijk - September, 21st
Simulation Results

End-To-End Delay

Average ETE delay (VOICE)

- 0.26055
- 0.26555
- 0.27055
- 0.27555
- 0.28055
- 0.28555

80W 90W 100W 110W 120W 130W WEB Requests/min

Average ETE delay (WEB)

- 0.74115
- 0.75115
- 0.76115
- 0.77115
- 0.78115
- 0.79115

80W 90W 100W 110W 120W 130W WEB Requests/min

Average ETE delay (EMAIL)

- 0.684
- 0.704
- 0.724
- 0.744
- 0.764
- 0.784

80W 90W 100W 110W 120W 130W WEB Requests/min

Throughput

Average Throughput (VOICE)

- 2
- 2.02
- 2.04
- 2.06
- 2.08
- 2.1

80W 90W 100W 110W 120W 130W WEB Requests/min

Average Throughput (WEB)

- 0.25
- 0.27
- 0.29
- 0.31
- 0.33
- 0.35

80W 90W 100W 110W 120W 130W WEB Requests/min

Average Throughput (EMAIL)

- 0.11
- 0.112
- 0.114
- 0.116
- 0.118
- 0.12

80W 90W 100W 110W 120W 130W WEB Requests/min
Conclusions

- **Radio Resource Management** issues for a CDMA satellite return link

- **Admission Control policies**
 - Fixed threshold
 - Effective bandwidth
 - *Gaussian approximation*
 - *Moving average window*

- **Future work**
 - More general solutions for bursty sources
 - *Chernoff bound*
 - *Predicting algorithms*